An introduction to a machine translation post-editing (MTPE) course


This article introduces a machine translation post-editing (MTPE) course intended for universities educating translation trainees. The aim of the programme is to accelerate the adaptation of translation education to the current requirements of the European Master’s in Translation (EMT) Competence Framework 2017 and the needs of translation students. The author assumes that MTPE as a process includes most of the contemporary translation tools such as CAT computer-assisted tools, TM terminology management, ML machine learning, MT machine translation and its variations, AI artificial intelligence, TQM translation quality management. The course covers 30 hours and is divided into 15 meetings of 1.5 hours each, with the syllabus structured in such a way that the trainees systematically learn and improve the MTPE process and develop an understanding of MT tools. Therefore, it can be treated as a means to achieve the goal set by EMT.


MTPE course, translation didactics, EMT competence framework, machine translation post-editing, translation technology

Cholewska, D. 2021. Machine Translation Post-Editing (MTPE) from the Perspective of Translation Trainees: Implications for Translation Pedagogy [unpublished MA thesis], University of Bialystok.

Belam, J. 2003. Buying up to falling down: A deductive approach to teaching post-editing. MT Summit IX Workshop on Teaching Translation Technologies and Tools (T4 Third Workshop on Teaching Machine Translation), 1-10.

Brożyna-Reczko, M. 2020. Narzędzia cyfrowe w dydaktyce przekładu: zasoby leksykalne oraz narzędzia korpusowe do edycji tekstu. Roczniki Humanistyczne 68: 181-193.

Davies, G. M. 2004. Multiple Voices in the Translation Classroom: Activities, tasks and projects (Benjamins Translation Library) vol. 53. Amsterdam/Philadelphia: John Benjamins.

Depraetere, I. 2010. What counts as useful advice in a university post-editing training context? In EAMT 2010: Proceedings of the 14th annual conference of the European association for machine translation, 1-9, Saint-Raphaël, France.

Doherty, S. & Kenny, D. 2014. The design and evaluation of a statistical machine translation syllabus for translation students. The Interpreter and Translator Trainer 8(2): 295-315.

EMT Board. 2017, December. The European Master’s in Translation Competence Framework 2017. Ec.Europa.Eu. Retrieved 6 December 2021, from

Esfandiari, M. R., Shokrpour, N., & Rahimi, F. 2019. An evaluation of the EMT: Compatibility with the professional translator’s needs. Cogent Arts & Humanities 6(1).

Flanagan, M. & Paulsen Christensen, T. 2014. Testing post-editing guidelines: how translation trainees interpret them and how to tailor them for translator training purposes. The Interpreter and Translator Trainer 8(2): 257-275.

Folaron, D. 2010. Translation tools. In: Y. Gambier & Luc van Doorslaer (eds.), Handbook of Translation Studies vol. 1, 429-436. Amsterdam/Philadelphia: John Benjamins.

Fox, O. 2000. The use of translation diaries in a process-oriented translation teaching methodology. In: C. Schäffner & B. Adab (eds.), Developing Translation Competence, 115-130. Amsterdam/Philadelphia: John Benjamins.

Guerberof Arenas, A. & Moorkens, J. 2019. Machine translation and post-editing training as part of a master’s programme. The Journal of Specialized Translation Issue 31: 217-238.

Kliffer, M. 2008. Post-editing machine translation as an FSL Exercise. Porta Linguarum: revista internacional de didáctica de las lenguas extranjeras 9: 53-68.

Nikishina, M. 2018. MT-assisted TM translation: the future of translation or just a fad? Applied Linguistics Papers 25/4: 91-100.

O’Brien, S. 2002. Teaching post-editing: a proposal for course content. In: Proceedings of the 6th EAMT Workshop Teaching Machine Translation, 99-106. Manchester: European Association for Machine Translation.

O’Brien, S., Balling, L. W., Simard, M., Specia, L., & Carl, M. (eds.). 2014. Post-Editing of Machine Translation: Processes and Applications. Cambridge: Cambridge Scholars Publishing.

Perspektywy. 2021, June 22. Perspektywy University Ranking 2021. Ranking.Perspektywy.Org. Retrieved 6 December 2021, from

Prince, M. J., & Felder, R. M. 2006. Inductive teaching and learning methods: Definitions, comparisons, and research bases. Journal of Engineering Education 95(2): 123-138.

Pym, A. 2013. Translation skill-sets in a machine-translation age. Meta: Translators’ Journal 58(3): 487-503.

Rybicki, J. 2021. Stylometry 0, Machine Translation 1. Deep Learning Based MT Scores Important Away Win. In: Book of abstracts CALT 2021

Świątek, J. 2015. The potential and limits of statistical machine translation. Społeczeństwo. Edukacja. Język 3: 187-195.

Tomaszkiewicz, T. 2019. Ewolucja kształcenia tłumaczy zawodowych w kontekście wyzwań współczesnego przekładoznawstwa i wymogów rynku pracy. Między Oryginałem a Przekładem 25(44): 199-216.

Witczak, O. 2016a. Tłumacze kontra maszyny, czyli o tłumaczeniu wspomaganym komputerowo. In: B. Whyatt, Z. Nadstoga, A. Chmiel, P. Korpal, T. Kościuczuk, I. Mazur, M. Perdek, K. Stachowiak, M. Turski, M. Tymczyńska & O. Witczak (eds.), Tłumacz – praktyczne aspekty zawodu, 201-232. Poznań: Wydawnictwo Naukowe UAM.

Witczak, O. 2016b. Incorporating post-editing into a computer-assisted translation course. A study of student attitudes. Journal of Translator Education and Translation Studies 1: 35-55.


Published : 2022-02-01

Romaniuk-Cholewska, D. (2022) “An introduction to a machine translation post-editing (MTPE) course”, Crossroads. A Journal of English Studies, 350, pp. 28-56. doi: 10.15290/CR.2021.35.4.03.

Dominika Romaniuk-Cholewska
University of Bialystok  Poland

Dominika Romaniuk-Cholewska is a graduate of the University of Bialystok, majoring in English Philology and Translation Studies, and currently a PhD student in Linguistics. Her scientific interests oscillate between foreign language didactics and translation studies. She is particularly interested in the problem of integrating modern technological tools into the work of teachers and translators. Her current research concerns technological competence in translation didactics.